Login / Signup

Advanced 3D Photogrammetric Surface Reconstruction of Extensive Objects by UAV Camera Image Acquisition.

Michele CalìRita Ambu
Published in: Sensors (Basel, Switzerland) (2018)
This paper proposes a replicable methodology to enhance the accuracy of the photogrammetric reconstruction of large-scale objects based on the optimization of the procedures for Unmanned Aerial Vehicle (UAV) camera image acquisition. The relationships between the acquisition grid shapes, the acquisition grid geometric parameters (pitches, image rates, camera framing, flight heights), and the 3D photogrammetric surface reconstruction accuracy were studied. Ground Sampling Distance (GSD), the necessary number of photos to assure the desired overlapping, and the surface reconstruction accuracy were related to grid shapes, image rate, and camera framing at different flight heights. The established relationships allow to choose the best combination of grid shapes and acquisition grid geometric parameters to obtain the desired accuracy for the required GSD. This outcome was assessed by means of a case study related to the ancient arched brick Bridge of the Saracens in Adrano (Sicily, Italy). The reconstruction of the three-dimensional surfaces of this structure, obtained by the efficient Structure-From-Motion (SfM) algorithms of the commercial software Pix4Mapper, supported the study by validating it with experimental data. A comparison between the surface reconstruction with different acquisition grids at different flight heights and the measurements obtained with a 3D terrestrial laser and total station-theodolites allowed to evaluate the accuracy in terms of Euclidean distances.
Keyphrases
  • deep learning
  • high speed
  • convolutional neural network
  • machine learning
  • escherichia coli
  • high resolution
  • artificial intelligence
  • staphylococcus aureus
  • cystic fibrosis