Login / Signup

UHPLC-DAD Method Development and Validation: Degradation Kinetic, Stress Studies of Farnesol and Characterization of Degradation Products Using LC-QTOF-ESI-MS with in silico Pharmacokinetics and Toxicity Predictions.

Shaik Khaja MoinuddinRahul L GajbhiyePakhuri MehtaBhaskar SarmahUpadhyayula Suryanarayana MurtyV RavichandiranPavan Kumar SamudralaAmit AlexanderPramod Kumar
Published in: Journal of chromatographic science (2021)
Farnesol (FAR) is a sesquiterpene molecule with high lipophilicity that has antibacterial and other pharmacological properties along with broad nutritional values with high commercial values. Although having potential, FAR stability behavior and degradation kinetics are not available in the literature. Hence, it is very essential to develop a simple, rapid, accurate, precise, robust, cheap UHPLC-DAD method for FAR. It was also proposed to study mechanistic insights into FAR under different degradation conditions. Therefore, we hypothesized to do systematic stability studies along with degradation kinetic and accelerated stability studies. The developed method was validated. FAR was studied for stress studies, degradation kinetics and ADMET prediction of degradants. Degradation products were characterized using LC-QTOF-ESI-MS. Developed method consists of an isocratic mobile phase with a wavelength of 215 nm. The percent recoveries for FAR were observed within the acceptance limit of 98-102%. The eight major degradation products were formed during stress studies. FAR follows first-order degradation kinetics. FAR and all degradants were found to have more than 75% good human oral absorption, and are non-toxic. FAR UHPLC-DAD method was developed, validated and performed stability studies to know the possible degradation pattern along with degradation kinetic studies.
Keyphrases
  • ms ms
  • simultaneous determination
  • case control
  • mass spectrometry
  • multiple sclerosis
  • systematic review
  • molecular docking
  • molecular dynamics simulations
  • photodynamic therapy
  • heat stress