Login / Signup

Thiol-Methylsulfone-Based Hydrogels for 3D Cell Encapsulation.

Julieta I PaezAleeza FarrukhRocío Valbuena-MendozaMałgorzata K Włodarczyk-BiegunAránzazu Del Campo
Published in: ACS applied materials & interfaces (2020)
Thiol-maleimide and thiol-vinylsulfone cross-linked hydrogels are widely used systems in 3D culture models, in spite of presenting uncomfortable reaction kinetics for cell encapsulation: too fast (seconds for thiol-maleimide) or too slow (minutes-hours for thiol-vinylsulfone). Here, we introduce the thiol-methylsulfone reaction as alternative cross-linking chemistry for cell encapsulation, particularized for PEG-hydrogels. The thiol-methylsulfone reaction occurs at high conversion and at intermediate reaction speed (seconds-minutes) under physiological pH range. These properties allow easy mixing of hydrogel precursors and cells to render homogeneous cell-laden gels at comfortable experimental time scales. The resulting hydrogels are cytocompatible and show comparable hydrolytic stability to thiol-vinylsulfone gels. They allow direct bioconjugation of thiol-derivatized ligands and tunable degradation kinetics by cross-linking with degradable peptide sequences. 3D cell culture of two cell types, fibroblasts and human umbilical vein endothelial cells (HUVECs), is demonstrated.
Keyphrases
  • drug delivery
  • single cell
  • cell therapy
  • endothelial cells
  • induced apoptosis
  • drug release
  • tissue engineering
  • stem cells
  • signaling pathway
  • cell cycle arrest
  • pi k akt