Login / Signup

Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire.

Jinhuan WangXiaozhi XuTing ChengLehua GuRuixi QiaoZhihua LiangDongdong DingHao HongPeiming ZhengZhibin ZhangZhihong ZhangShuai ZhangGuoliang CuiChao ChangChen HuangJiajie QiJing LiangCan LiuYonggang ZuoGuodong XueXinjie FangJinpeng TianMuhong WuYi GuoZhixin YaoQingze JiaoLei LiuPeng GaoQunyang LiRong YangGuangyu ZhangZhilie TangDapeng YuEnge WangJianming LuYun ZhaoShiwei WuFeng DingKai-Hui Liu
Published in: Nature nanotechnology (2021)
The growth of wafer-scale single-crystal two-dimensional transition metal dichalcogenides (TMDs) on insulating substrates is critically important for a variety of high-end applications1-4. Although the epitaxial growth of wafer-scale graphene and hexagonal boron nitride on metal surfaces has been reported5-8, these techniques are not applicable for growing TMDs on insulating substrates because of substantial differences in growth kinetics. Thus, despite great efforts9-20, the direct growth of wafer-scale single-crystal TMDs on insulating substrates is yet to be realized. Here we report the successful epitaxial growth of two-inch single-crystal WS2 monolayer films on vicinal a-plane sapphire surfaces. In-depth characterizations and theoretical calculations reveal that the epitaxy is driven by a dual-coupling-guided mechanism, where the sapphire plane-WS2 interaction leads to two preferred antiparallel orientations of the WS2 crystal, and sapphire step edge-WS2 interaction breaks the symmetry of the antiparallel orientations. These two interactions result in the unidirectional alignment of nearly all the WS2 islands. The unidirectional alignment and seamless stitching of WS2 islands are illustrated via multiscale characterization techniques; the high quality of WS2 monolayers is further evidenced by a photoluminescent circular helicity of ~55%, comparable to that of exfoliated WS2 flakes. Our findings offer the opportunity to boost the production of wafer-scale single crystals of a broad range of two-dimensional materials on insulators, paving the way to applications in integrated devices.
Keyphrases
  • room temperature
  • staphylococcus aureus
  • transition metal
  • pseudomonas aeruginosa
  • gold nanoparticles
  • genome wide
  • solid state