Time-to-event calibration-free odds design: A robust efficient design for phase I trials with late-onset outcomes.
Huaqing JinGuosheng YinPublished in: Pharmaceutical statistics (2023)
Compared with most of the existing phase I designs, the recently proposed calibration-free odds (CFO) design has been demonstrated to be robust, model-free, and easy to use in practice. However, the original CFO design cannot handle late-onset toxicities, which have been commonly encountered in phase I oncology dose-finding trials with targeted agents or immunotherapies. To account for late-onset outcomes, we extend the CFO design to its time-to-event (TITE) version, which inherits the calibration-free and model-free properties. One salient feature of CFO-type designs is to adopt game theory by competing three doses at a time, including the current dose and the two neighboring doses, while interval-based designs only use the data at the current dose and is thus less efficient. We conduct comprehensive numerical studies for the TITE-CFO design under both fixed and randomly generated scenarios. TITE-CFO shows robust and efficient performances compared with interval-based and model-based counterparts. As a conclusion, the TITE-CFO design provides robust, efficient, and easy-to-use alternatives for phase I trials when the toxicity outcome is late-onset.