Bioinspired Multifunctional Cellular Plastics with a Negative Poisson's Ratio for High Energy Dissipation.
Dewen LiXiaochen BuZongpu XuYingwu LuoHao BaiPublished in: Advanced materials (Deerfield Beach, Fla.) (2020)
Cellular plastics have been widely used in transportation, aerospace, and personal safety applications owing to their excellent mechanical, thermal, and acoustic properties. It is highly desirable to impart them with a complex porous structure and composition distribution to obtain specific functionality for various engineering applications, which is challenging with conventional foaming technologies. Herein, it is demonstrated that this can be achieved through the controlled freezing process of a monomer/water emulsion, followed by cryopolymerization and room temperature thawing. As ice is used as a template, this method is environmentally friendly and capable of producing cellular plastics with various microstructures by harnessing the numerous morphologies of ice crystals. In particular, a cellular plastic with a radially aligned structure shows a negative Poisson's ratio under compression. The rigid plastic shows a much higher energy dissipation capability compared to other materials with similar negative Poisson's ratios. Additionally, the simplicity and scalability of this approach provides new possibilities for fabricating high-performance cellular plastics with well-defined porous structures and composition distributions.