Login / Signup

Exploiting Zone-Folding Induced Quasi-Bound Modes to Achieve Highly Coherent Thermal Emissions.

Kaili SunUriel LevyZhanghua Han
Published in: Nano letters (2024)
Thermal emissions with high coherence, although not as high as those of lasers, still play a crucial role in many practical applications. In this work, by exploiting the geometric perturbation-induced optical lattice tripling and the associated Brillion zone folding effect, we propose and investigate thermal emissions in the mid-infrared with simultaneous high temporal and spatial coherence. In contrast with the case of period-doubling perturbation in our previous work, the steeper part of the guided mode dispersion band will be folded to the high-symmetry Γ point in the ternary grating. In this case, a specific emission wavelength corresponds to only a very small range of wavevectors. Consequently, apart from the high temporal coherence characterized by an experimental bandwidth around 30 nm, the achieved thermal emissions also feature ultrahigh spatial coherence. Calculations show that at the thermal emission wavelengths in the mid-infrared, the spatial coherence length can easily reach up to mm scale.
Keyphrases
  • magnetic resonance
  • molecular dynamics simulations
  • machine learning
  • magnetic resonance imaging
  • high glucose
  • risk assessment
  • gold nanoparticles
  • endothelial cells
  • life cycle
  • contrast enhanced