SARS-CoV-2 persistence and infectivity in COVID-19 corpses: a systematic review.
Syandrez Prima PutraTaufik HidayatRahma Tsania ZuhrahPublished in: Forensic science, medicine, and pathology (2022)
The persistence and infectivity of SARS-CoV-2 in different postmortem COVID-19 specimens remain unclear despite numerous published studies. This information is essential to improve corpses management related to clinical biosafety and viral transmission in medical staff and the public community. We aim to understand SARS-CoV-2 persistence and infectivity in COVID-19 corpses. We conducted a systematic review according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocols. A systematic literature search was performed in PubMed, Science Direct Scopus, and Google Scholar databases using specific keywords. We critically reviewed the collected studies and selected the articles that met the criteria. We included 33 scientific papers that involved 491 COVID-19 corpses. The persistence rate and maximum postmortem interval (PMI) range of the SARS-CoV-2 findings were reported in the lungs (138/155, 89.0%; 4 months), followed by the vitreous humor (7/37, 18.9%; 3 months), nasopharynx/oropharynx (156/248, 62.9%; 41 days), abdominal organs (67/110, 60.9%; 17 days), skin (14/24, 58.3%; 17 days), brain (14/31, 45.2%; 17 days), bone marrow (2/2, 100%; 12 days), heart (31/69, 44.9%; 6 days), muscle tissues (9/83, 10.8%; 6 days), trachea (9/20, 45.0%; 5 days), and perioral tissues (21/24, 87.5%; 3.5 days). SARS-CoV-2 infectivity rates in viral culture studies were detected in the lungs (9/15, 60%), trachea (2/4, 50%), oropharynx (1/4, 25%), and perioral (1/4, 25%) at a maximum PMI range of 17 days. The SARS-CoV-2 persists in the human body months after death and should be infectious for weeks. This data should be helpful for postmortem COVID-19 management and viral transmission preventive strategy.
Keyphrases
- sars cov
- respiratory syndrome coronavirus
- bone marrow
- systematic review
- coronavirus disease
- mental health
- gene expression
- heart failure
- skeletal muscle
- mesenchymal stem cells
- endothelial cells
- emergency department
- big data
- deep learning
- blood brain barrier
- tyrosine kinase
- brain injury
- gestational age
- adverse drug
- ultrasound guided
- induced pluripotent stem cells