Deep Learning Methods for Chest Disease Detection Using Radiography Images.
Adnane Ait NasserMoulay A AkhloufiPublished in: SN computer science (2023)
X-ray images are the most widely used medical imaging modality. They are affordable, non-dangerous, accessible, and can be used to identify different diseases. Multiple computer-aided detection (CAD) systems using deep learning (DL) algorithms were recently proposed to support radiologists in identifying different diseases on medical images. In this paper, we propose a novel two-step approach for chest disease classification. The first is a multi-class classification step based on classifying X-ray images by infected organs into three classes (normal, lung disease, and heart disease). The second step of our approach is a binary classification of seven specific lungs and heart diseases. We use a consolidated dataset of 26,316 chest X-ray (CXR) images. Two deep learning methods are proposed in this paper. The first is called DC-ChestNet. It is based on ensembling deep convolutional neural network (DCNN) models. The second is named VT-ChestNet. It is based on a modified transformer model. VT-ChestNet achieved the best performance overcoming DC-ChestNet and state-of-the-art models (DenseNet121, DenseNet201, EfficientNetB5, and Xception). VT-ChestNet obtained an area under curve (AUC) of 95.13% for the first step. For the second step, it obtained an average AUC of 99.26% for heart diseases and an average AUC of 99.57% for lung diseases.
Keyphrases
- deep learning
- convolutional neural network
- artificial intelligence
- high resolution
- machine learning
- healthcare
- heart failure
- coronary artery disease
- dual energy
- computed tomography
- magnetic resonance
- immune response
- loop mediated isothermal amplification
- electron microscopy
- mass spectrometry
- sensitive detection
- image quality