Login / Signup

Fine-tuning protein language models boosts predictions across diverse tasks.

Robert SchmirlerMichael HeinzingerBurkhard Rost
Published in: Nature communications (2024)
Prediction methods inputting embeddings from protein language models have reached or even surpassed state-of-the-art performance on many protein prediction tasks. In natural language processing fine-tuning large language models has become the de facto standard. In contrast, most protein language model-based protein predictions do not back-propagate to the language model. Here, we compare the fine-tuning of three state-of-the-art models (ESM2, ProtT5, Ankh) on eight different tasks. Two results stand out. Firstly, task-specific supervised fine-tuning almost always improves downstream predictions. Secondly, parameter-efficient fine-tuning can reach similar improvements consuming substantially fewer resources at up to 4.5-fold acceleration of training over fine-tuning full models. Our results suggest to always try fine-tuning, in particular for problems with small datasets, such as for fitness landscape predictions of a single protein. For ease of adaptability, we provide easy-to-use notebooks to fine-tune all models used during this work for per-protein (pooling) and per-residue prediction tasks.
Keyphrases
  • air pollution
  • autism spectrum disorder
  • protein protein
  • working memory
  • magnetic resonance imaging
  • mental health
  • body composition
  • rna seq