Login / Signup

Ordering, phase behavior, and correlations of semiflexible polymers in confinement.

Arash Nikoubashman
Published in: The Journal of chemical physics (2021)
Semiflexible polymers are ubiquitous in biological systems, e.g., as building blocks of the cytoskeleton, and they also play an important role in various materials due to their ability to form liquid-crystalline order. These rigid macromolecules are characterized by numerous (hierarchical) length-scales that define their static and dynamic properties. Confinement can promote uniform order, e.g., through capillary nematization in narrow slits, but it can also introduce long-ranged disruptions of the nematic ordering field through (unavoidable) topological defects in spherical containers. This Perspective concentrates on the theoretical description and computational modeling of such confined systems, with the focus on spherical containers that play an important role in the injection/ejection of double-stranded DNA from viral capsids and the fabrication of nematic droplets. Basic principles and recent developments are reviewed, followed by a discussion of open questions and potential directions for future research in this field.
Keyphrases
  • minimally invasive
  • current status
  • single molecule
  • climate change
  • low cost