Metabolic engineering of Escherichia coli for production of chemicals derived from the shikimate pathway.
Zhu LiHuiying WangDongqin DingYongfei LiuHuan FangZhishuai ChangTao ChenDawei ZhangPublished in: Journal of industrial microbiology & biotechnology (2020)
The shikimate pathway is indispensable for the biosynthesis of natural products with aromatic moieties. These products have wide current and potential applications in food, cosmetics and medicine, and consequently have great commercial value. However, compounds extracted from various plants or synthesized from petrochemicals no longer satisfy the requirements of contemporary industries. As a result, an increasing number of studies has focused on this pathway to enable the biotechnological manufacture of natural products, especially in E. coli. Furthermore, the development of synthetic biology, systems metabolic engineering and high flux screening techniques has also contributed to improving the biosynthesis of high-value compounds based on the shikimate pathway. Here, we review approaches based on a combination of traditional and new metabolic engineering strategies to increase the metabolic flux of the shikimate pathway. In addition, applications of this optimized pathway to produce aromatic amino acids and a range of natural products is also elaborated. Finally, this review sums up the opportunities and challenges facing this field.