Login / Signup

Chemical synthesis of hierarchical NiCo2S4 nanosheets like nanostructure on flexible foil for a high performance supercapacitor.

D-Y KimG S GhodakeN C MaileAvinash Ashok KadamDae Sung LeeV J FulariS K Shinde
Published in: Scientific reports (2017)
In this study, hierarchical interconnected nickel cobalt sulfide (NiCo2S4) nanosheets were effectively deposited on a flexible stainless steel foil by the chemical bath deposition method (CBD) for high-performance supercapacitor applications. The resulting NiCo2S4 sample was characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and electrochemical measurements. XRD and X-ray photoelectron spectroscopy (XPS) results confirmed the formation of the ternary NiCo2S4 sample with a pure cubic phase. FE-SEM and HR-TEM revealed that the entire foil surface was fully covered with the interconnected nanosheets like surface morphology. The NiCo2S4 nanosheets demonstrated impressive electrochemical characteristics with a specific capacitance of 1155 F g-1 at 10 mV s-1 and superior cycling stability (95% capacity after 2000 cycles). These electrochemical characteristics could be attributed to the higher active area and higher conductivity of the sample. The results demonstrated that the interconnected NiCo2S4 nanosheets are promising as electrodes for supercapacitor and energy storage applications.
Keyphrases