Adaptive social strategies in a solitary carnivore.
L Mark ElbrochMichael LevyMark N LubellHoward QuigleyAnthony CaragiuloPublished in: Science advances (2017)
Cost-benefit trade-offs for individuals participating in social behaviors are the basis for current theories on the evolution of social behaviors and societies. However, research on social strategies has largely ignored solitary animals, in which we assume that rare interactions are explained by courtship or territoriality or, in special circumstances, resource distributions or kinship. We used directed network analysis of conspecific tolerance at food sources to provide evidence that a solitary carnivore, the puma (Puma concolor), exhibited adaptive social strategies similar to more social animals. Every puma in our analysis participated in the network, which featured densely connected communities delineated by territorial males. Territorial males also structured social interactions among pumas. Contrary to expectations, conspecific tolerance was best characterized by direct reciprocity, establishing a fitness benefit to individuals that participated in social behaviors. However, reciprocity operated on a longer time scale than in gregarious species. Tolerance was also explained by hierarchical reciprocity, which we defined as network triangles in which one puma (generally male) received tolerance from two others (generally females) that also tolerated each other. Hierarchical reciprocity suggested that males might be cheating females; nevertheless, we suspect that males and females used different fitness currencies. For example, females may have benefited from tolerating males through the maintenance of social niches that support breeding opportunities. Our work contributes evidence of adaptive social strategies in a solitary carnivore and support for the applicability of theories of social behavior across taxa, including solitary species in which they are rarely tested.