Login / Signup

Ecological associations of autopodial osteology in Neotropical geckos.

Priscila S RothierRenata BrandtTiana Kohlsdorf
Published in: Journal of morphology (2017)
Coevolution of form and function inspires investigation of associations between morphological variation and the exploitation of specific ecological settings. Such relationships, based mostly on traits of external morphology, have been extensively described for vertebrates, and especially so for squamates. External features are, however, composed by both soft tissues and bones, and these likely play different biomechanical roles during locomotion, such as in the autopodia. Therefore, ecological trends identified on the basis of external morphological measurements may not be directly correlated with equivalent variation in osteology. Here, we investigate how refined parameters of autopodial osteology relate to ecology, by contrasting climbing and nonclimbing geckos. Our first step consisted of inferring how external and osteological morphometric traits coevolved in the group. Our results corroborate the hypothesis of coevolution between external and osteological elements in the autopodia of geckos, and provides evidence for associations between specific osteological traits and preferred locomotor habit. Specifically, nonclimbers exhibit longer ultimate and penultimate phalanges of Digit V in the manus and pes and also a longer fifth metatarsal in comparison with climbers, a pattern discussed here in the context of the differential demands made upon locomotion in specific ecological contexts. Our study highlights the relevance of osteological information for discussing the evolution of ecological associations of the tetrapod autopodium. J. Morphol. 278:290-299, 2017. © 2017 Wiley Periodicals, Inc.
Keyphrases
  • human health
  • climate change
  • genome wide
  • risk assessment
  • spinal cord injury
  • healthcare
  • health information
  • social media