Exploring the Molecular Basis of Substrate and Product Selectivities of Nocardicin Bifunctional Thioesterase.
Qian YuLefan XieYilu LiLinquan BaiYi-Lei ZhaoDongqing WeiTing ShiPublished in: Interdisciplinary sciences, computational life sciences (2021)
D-amino acid introduction in peptides can enrich their biological activities and pharmacological properties as potential drugs. This achievement of stereochemical inversion usually owes to an epimerase or racemase. Interestingly, a unique bifunctional thioesterase (NocTE), which is incorporated in nonribosomal peptide synthetase (NRPS) NocA-NocB assembly line for the biosynthesis of monocyclic β-lactam antibiotic nocardicin A, can control the generation of D-products with high stereochemical purity. However, the molecular basis of NocTE selectivity on substrates and products is still unclear. Herein, we constructed a series of systems with different peptides varying in stereochemistry, length, and composition to investigate the substrate selectivity. The studies on binding affinities and loading conformations elucidated the important roles of peptide length and β-lactam ring in substrate selectivity. Through energy decomposition and interaction analyses, some key residues involved in substrate selectivity were captured. On the other hand, natural product undergoing epimerization was found to be liberated from the active pocket more easily in comparison with its diastereomer (epi-nocardicin G), explaining the superiority of nocardicin G. These results provide detailed molecular insights into the exquisite control of substrate and product scopes for NocTE, and encourage to diversification of substrates and final products for NRPS assembly line. The molecular insights into substrate and product selectivities of unique bifunctional thioesterase NocTE were illustrated via several molecular simulations and free energy calculations, contributing to expanding substrate and product scopes of nonribosomal peptide synthetases.