Login / Signup

FieldSAFE: Dataset for Obstacle Detection in Agriculture.

Mikkel Fly KraghPeter ChristiansenMorten Stigaard LaursenMorten LarsenKim Arild SteenOle GreenHenrik KarstoftRasmus Nyholm Jørgensen
Published in: Sensors (Basel, Switzerland) (2017)
In this paper, we present a multi-modal dataset for obstacle detection in agriculture. The dataset comprises approximately 2 h of raw sensor data from a tractor-mounted sensor system in a grass mowing scenario in Denmark, October 2016. Sensing modalities include stereo camera, thermal camera, web camera, 360 ∘ camera, LiDAR and radar, while precise localization is available from fused IMU and GNSS. Both static and moving obstacles are present, including humans, mannequin dolls, rocks, barrels, buildings, vehicles and vegetation. All obstacles have ground truth object labels and geographic coordinates.
Keyphrases
  • high speed
  • climate change
  • convolutional neural network
  • loop mediated isothermal amplification
  • label free
  • real time pcr
  • working memory
  • high resolution