Login / Signup

Two-Dimensional Master Equation Modeling of Some Multichannel Unimolecular Reactions.

Akira Matsugi
Published in: The journal of physical chemistry. A (2021)
Multichannel thermal decomposition reactions of n-propyl radicals, 1-pentyl radicals, and toluene are investigated by solving a two-dimensional master equation formulated as a function of total energy (E) and angular momentum (J). The primary aim of this study is to elucidate the role of angular momentum in the kinetics of multichannel unimolecular reactions. The collisional transition processes of the reactants colliding with argon are characterized based on the classical trajectory calculations and implemented in the master equation. The rate constants calculated by using the two-dimensional master equation are compared with those of one-dimensional master equations. The consequence of the explicit treatment of angular momentum depends on the J dependence of the microscopic rate constants and is particularly emphasized in the thermal decomposition of toluene, for which the C-H and C-C bond fission channels are considered. The centrifugal effect is insignificant in the energetically favored C-H bond fission but is substantial in the energetically higher C-C bond fission, which causes rotational channel switching of the microscopic rate constants. The proper treatment of the J-dependent channel coupling effect, weak collisional transfer of J, and initial-J-dependent collisional energy transfer are found to be essential for predicting the branching fractions at low pressures.
Keyphrases
  • energy transfer
  • molecular dynamics
  • quantum dots
  • density functional theory
  • combination therapy
  • electron transfer
  • smoking cessation
  • transition metal
  • replacement therapy
  • atomic force microscopy