The Cholinergic Brain in Parkinson's Disease.
Jacopo PasquiniDavid James BrooksNicola PavesePublished in: Movement disorders clinical practice (2021)
The central cholinergic system includes the basal forebrain nuclei, mainly projecting to the cortex, the mesopontine tegmental nuclei, mainly projecting to the thalamus and subcortical structures, and other groups of projecting neurons and interneurons. This system regulates many functions of human behavior such as cognition, locomotion, and sleep. In Parkinson's disease (PD), disruption of central cholinergic transmission has been associated with cognitive decline, gait problems, freezing of gait (FOG), falls, REM sleep behavior disorder (RBD), neuropsychiatric manifestations, and olfactory dysfunction. Neuropathological and neuroimaging evidence suggests that basal forebrain pathology occurs simultaneously with nigrostriatal denervation, whereas pathology in the pontine nuclei may occur before the onset of motor symptoms. These studies have also detailed the clinical implications of cholinergic dysfunction in PD. Degeneration of basal forebrain nuclei and consequential cortical cholinergic denervation are associated with and may predict the subsequent development of cognitive decline and neuropsychiatric symptoms. Gait problems, FOG, and falls are associated with a complex dysfunction of both pontine and basal forebrain nuclei. Olfactory impairment is associated with cholinergic denervation of the limbic archicortex, specifically hippocampus and amygdala. Available evidence suggests that cholinergic dysfunction, alongside failure of the dopaminergic and other neurotransmitters systems, contributes to the generation of a specific set of clinical manifestations. Therefore, a "cholinergic phenotype" can be identified in people presenting with cognitive decline, falls, and RBD. In this review, we will summarize the organization of the central cholinergic system and the clinical correlates of cholinergic dysfunction in PD.