Macroscopic variation in Arabidopsis mutants despite stomatal uniformity across soil nutrient environments.
Jamison LeeCourtney J MurrenPublished in: Genetica (2021)
Stomata are essential pores flanked by guard cells that control gas exchange in plants. We can utilize stomatal size and density measurements as a proxy for a plant's capacity for gas exchange. While stomatal responses to stressful environments are well studied; data are lacking in the responses across mutant genotypes of the same species in these trait and treatment interactions or genetic variation in phenotypic plasticity. We evaluated the effects of soil nutrient variation on macroscopic and stomatal traits of Arabidopsis thaliana T-DNA insertion mutants for which prior performance in a single benign growing condition were available. Nutrient-induced stress significantly impacted traits including plant biomass, height, fruit number, and leaf number which we denote as macroscopic traits. We found evidence that genotype by environment effects exist for macroscopic traits, yet total stomatal area variation, or "microscopic variation" across environments was modest. Divergence from the wildtype line varied by mutant background and these responses were variable among traits. These findings suggest that Arabidopsis employs a strategy of physiological compensation, sacrificing morphological traits to maintain stomatal production.