Login / Signup

FirebotSLAM: Thermal SLAM to Increase Situational Awareness in Smoke-Filled Environments.

Benjamin Ronald van ManenVictor IJzebrand SluiterAbeje Yenehun Mersha
Published in: Sensors (Basel, Switzerland) (2023)
Operating in extreme environments is often challenging due to the lack of perceptual knowledge. During fire incidents in large buildings, the extreme levels of smoke can seriously impede a firefighter's vision, potentially leading to severe material damage and loss of life. To increase the safety of firefighters, research is conducted in collaboration with Dutch fire departments into the usability of Unmanned Ground Vehicles to increase situational awareness in hazardous environments. This paper proposes FirebotSLAM, the first algorithm capable of coherently computing a robot's odometry while creating a comprehensible 3D map solely using the information extracted from thermal images. The literature showed that the most challenging aspect of thermal Simultaneous Localization and Mapping (SLAM) is the extraction of robust features in thermal images. Therefore, a practical benchmark of feature extraction and description methods was performed on datasets recorded during a fire incident. The best-performing combination of extractor and descriptor is then implemented into a state-of-the-art visual SLAM algorithm. As a result, FirebotSLAM is the first thermal odometry algorithm able to perform global trajectory optimization by detecting loop closures. Finally, FirebotSLAM is the first thermal SLAM algorithm to be tested in a fiery environment to validate its applicability in an operational scenario.
Keyphrases