Adsorption of Acetate on Au(111): An in-situ Scanning Tunnelling Microscopy Study and Implications on Formic Acid Electrooxidation.
Areeg AbdelrahmanJohannes M HermannTimo JacobLudwig A KiblerPublished in: Chemphyschem : a European journal of chemical physics and physical chemistry (2019)
The adsorption of acetate on an Au(111) electrode surface in contact with acetic acid at pH 2.7 was imaged in-situ using scanning tunnelling microscopy (STM). Two different ordered structures were imaged for acetate adsorbed in the bidentate configuration on the unreconstructed 1 × 1 surface at 0.95 V (vs. the saturated calomel electrode, SCE). The first structure, ( 19 × 19 ) R 23 . 45 ∘ , is metastable and transforms at constant potential within 20 minutes to a ( 2 × 2 ) structure, which is thermodynamically more favourable. The ( 2 × 2 ) acetate adlayer starts to form at step edges and propagates via nucleation and growth onto terraces. The findings from in-situ STM are in agreement with the electrochemical behaviour of acetate on Au(111) characterized by voltammetry. A comparison is made with formate adsorption on Au(111). While acetate is not reactive, in contrast to formate, it can act as a spectator species in formic acid electrooxidation.