Evaluation of the biocompatibility of root canal sealers on human periodontal ligament cells ex vivo.
Susanne JungViktor LibrichtSonja SielkerMarcel R HanischEdgar SchäferTill DammaschkePublished in: Odontology (2018)
The aim of this study was to evaluate the biocompatibility of two comparatively new calcium silicate containing sealers (MTA-Fillapex and BioRoot-RCS) with that of two established sealers (AH-Plus, epoxy resin-based; Pulp-Canal-Sealer, zinc oxide eugenol containing). Human periodontal ligament cells (PDL-cells) were brought in contact with eluates from freshly mixed and set sealer. The sealers were mixed strictly according to the manufacturers' instructions and identically samples were produced. 1:1, 1:2, and 1:10 dilutions of sealers extract were used. Extracts from freshly mixed sealer were added to the PDL-cells on day one to simulate a clinical scenario. Subsequently, at 24 h, 7, 14, and 21 days extracts form set sealers were used for PDL-cell culturing. PDL-cell viability was analyzed by living-cell-count, MTT-assay, and living/dead-staining, cytotoxicity by LDH-assay, and changes by Richardson-staining. All data were statistically evaluated by one way ANOVA and a posthoc analysis with Bonferroni-Holm testing (p < 0.05). In contact with BioRoot-RCS a regeneration of the PDL-cells were observed over time. This sealer showed the lowest toxicity in a freshly mixed and set state (p < 0.05). MTA-Fillapex and Pulp-Canal-Sealer were cytotoxic in a fresh as well as in a set state, whereas AH-Plus was cytotoxic in a freshly mixed state, but not when the sealer was set. BioRoot-RCS is biocompatible and bioactive because it seems to have a positive influence on the PDL-cell metabolism. Pulp Canal Sealer and MTA-Fillapex showed no biocompatibility in contact with PDL-cells at all. Freshly mixed AH Plus is less biocompatible on PDL than in a set state.