Login / Signup

Prior uncertainty impedes discrete locomotor adaptation.

Aojun JiangFrancis M GroverMary A BucklinJasjit DeolAnna ShaferKeith E Gordon
Published in: PloS one (2024)
The impact of environmental uncertainty on locomotor adaptation remains unclear. Environmental uncertainty could either aid locomotor adaptation by prompting protective control strategies that stabilize movements to assist learning or impede adaptation by reducing error sensitivity and fostering hesitance to pursue corrective movements. To explore this, we investigated participants' adaptation to a consistent force field after experiencing environmental uncertainty in the form of unpredictable balance perturbations. We compared the performance of this group (Perturbation) to the adaptive performance of a group that did not experience any unpredictable perturbations (Non-Perturbation). Perturbations were delivered using a cable-driven robotic device applying lateral forces to the pelvis. We assessed whole-body center of mass (COM) trajectory (COM signed deviation), anticipatory postural adjustments (COM lateral offset), and first step width. The Perturbation group exhibited larger disruptions in COM trajectory (greater COM signed deviations) than the Non-Perturbation group when first walking in the force field. While the COM signed deviations of both groups decreased towards baseline values, only the Non-Perturbation group returned to baseline levels. The Perturbation groups COM signed deviations remained higher, indicating they failed to fully adapt to the force field before the end. The Perturbation group also did not adapt their COM lateral offset to counter the predictable effects of the force field as the Non-Perturbation group did, and their first step width increased more slowly. Our findings suggest that exposure to unpredictable perturbations impeded future sensorimotor adaptations to consistent perturbations.
Keyphrases
  • spinal cord injury
  • single molecule
  • minimally invasive
  • risk assessment
  • mass spectrometry
  • climate change
  • high resolution
  • atomic force microscopy
  • high intensity
  • robot assisted