Login / Signup

The Effects of Quinoline and Non-Quinoline Inhibitors on the Kinetics of Lipid-Mediated β-Hematin Crystallization.

Sharné-Maré FitzroyJohandie GildenhuysTania OlivierNdivhuwo Olga TshililoDavid KuterKatherine Allison de Villiers
Published in: Langmuir : the ACS journal of surfaces and colloids (2017)
The throughput of a biomimetic lipid-mediated assay used to investigate the effects of inhibitors on the kinetics of β-hematin formation has been optimized through the use of 24-well microplates. The rate constant for β-hematin formation mediated by monopalmitoyl-rac-glycerol was reduced from 0.17 ± 0.04 min-1 previously measured in Falcon tubes to 0.019 ± 0.002 min-1 in the optimized assay. While this necessitated longer incubation times, transferring aliquots from multiple 24-well plates to a single 96-well plate for final absorbance measurements actually improved the overall turnaround time per inhibitor. This assay has been applied to investigate the effects of four clinically relevant antimalarial drugs (chloroquine, amodiaquine, quinidine, and quinine) as well as several short-chain 4-aminoquinoline derivatives and non-quinoline (benzamide) compounds on the kinetics of β-hematin formation. The adsorption strength of these inhibitors to crystalline β-hematin (Kads) was quantified using a theoretical kinetic model that is based on the Avrami equation and the Langmuir isotherm. Statistically significant linear correlations between lipid-mediated β-hematin inhibitory activity and Kads values for quinoline (r2 = 0.76, P-value = 0.0046) and non-quinoline compounds (r2 = 0.99, P-stat = 0.0006), as well as between parasite inhibitory activity (D10) and Kads values for quinoline antimalarial drugs and short-chain chloroquine derivatives (r2 = 0.64, P-value = 0.0098), provide a strong indication that drug action involves adsorption to the surface of β-hematin crystals. Independent support in this regard is provided by experiments that spectrophotometrically monitor the direct adsorption of antimalarial drugs to preformed β-hematin.
Keyphrases
  • molecular docking
  • plasmodium falciparum
  • aqueous solution
  • high throughput
  • cell proliferation
  • drug induced
  • room temperature