Login / Signup

Synergistic activity of Stryphnodendron adstringens and potassium sorbate against foodborne bacteria.

Daliah Alves Coelho TrevisanAndreia Farias Pereira BatistaPaula Aline Zanetti Campanerut-SáDaniela Cristina de Medeiros AraújoTaísa Dalla Valle Rörig RibeiroJoão Carlos Palazzo de MelloJane Martha Graton Mikcha
Published in: Archives of microbiology (2022)
Stryphnodendron adstringens is a medicinal plant that has a broad spectrum of action, including antibacterial activity. The aim of the present study was to evaluate the effect of S. adstringens alone and in combination with potassium sorbate (PS) against foodborne bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined and, for most of the bacteria tested, the crude extract (CE), aqueous fraction (AQF), and ethyl-acetate fraction (EAF) of S. adstringens had a MIC and MBC ranging from 500 to ≥ 1000 µg/mL. The AQF and EAF showed greater activity against S. aureus strains (MIC = 125 to 250 µg/mL; MBC = 500 to 1000 µg/m). Quantitative cell viability was determined and was observed reductions ranging from 3.0 to 5.8 log10 CFU/ml.The combination of S. adstringens and PS against seven S. aureus isolates was determined by the checkerboard method at neutral and acid pH. In a neutral medium, the AQF + PS combination presented synergistic or additive interactions against six S. aureus strains. The combination of EAF + PS resulted in additive interactions against four bacterial isolates. In an acidic medium, the AQF + PS combination was synergistic or additive against all S. aureus, while EAF + PS presented the same effect against six S. aureus strains S. adstringens showed important antibacterial effects against foodborne S. aureus strains. Moreover, the combination of S. adstringens fractions and PS improved the antibacterial activity compared to the compounds utilized individually. The combined use of these compounds may be an alternative to reduce bacterial food contamination and improve food safety.
Keyphrases
  • escherichia coli
  • ionic liquid
  • silver nanoparticles
  • mass spectrometry
  • heavy metals
  • climate change