Direct RNA Nanopore Sequencing of SARS-CoV-2 Extracted from Critical Material from Swabs.
Davide VaccaAntonino FiannacaFabio TramutoValeria CancilaLaura La PagliaWalter MazzuccoAlessandro GulinoMassimo La RosaCarmelo Massimo MaidaGaia MorelloBeatrice BelmonteAlessandra CasuccioRosario MaugeriGerardo IacopinoCarmela Rita BalistreriFrancesco VitaleClaudio TripodoAlfonso UrsoPublished in: Life (Basel, Switzerland) (2022)
In consideration of the increasing prevalence of COVID-19 cases in several countries and the resulting demand for unbiased sequencing approaches, we performed a direct RNA sequencing (direct RNA seq.) experiment using critical oropharyngeal swab samples collected from Italian patients infected with SARS-CoV-2 from the Palermo region in Sicily. Here, we identified the sequences SARS-CoV-2 directly in RNA extracted from critical samples using the Oxford Nanopore MinION technology without prior cDNA retrotranscription. Using an appropriate bioinformatics pipeline, we could identify mutations in the nucleocapsid (N) gene, which have been reported previously in studies conducted in other countries. In conclusion, to the best of our knowledge, the technique used in this study has not been used for SARS-CoV-2 detection previously owing to the difficulties in the extraction of RNA of sufficient quantity and quality from routine oropharyngeal swabs. Despite these limitations, this approach provides the advantages of true native RNA sequencing and does not include amplification steps that could introduce systematic errors. This study can provide novel information relevant to the current strategies adopted in SARS-CoV-2 next-generation sequencing.
Keyphrases
- sars cov
- single cell
- rna seq
- respiratory syndrome coronavirus
- nucleic acid
- healthcare
- ejection fraction
- single molecule
- coronavirus disease
- emergency department
- gene expression
- patient safety
- quality improvement
- social media
- chronic kidney disease
- clinical practice
- real time pcr
- circulating tumor cells
- health information