Login / Signup

Cobalt-Adenosine Monophosphate Supramolecular Hydrogel with pH-Responsive Multi-Nanozymatic Activity.

Vidhi AgarwalNidhi VarshneySurbhi SinghNitin KumarAmrita ChakrabortyBhagwati SharmaHem Chandra JhaTridib K Sarma
Published in: ACS applied bio materials (2023)
Self-assembled metal-ion cross-linked multifunctional hydrogels are gaining a lot of attention in the fields of biomedical and biocatalysis. Herein, we report a heat-triggered metallogel that was spontaneously formed by the self-assembly of adenosine 5'-monophosphate (AMP) and cobalt chloride, accompanied by a color transition depicting an octahedral to tetrahedral transition at high temperature. The hydrogel shows excellent stability in a wide pH window from 1 to 12. The metallogel is being exploited as a multienzyme mimic, exhibiting pH-responsive catalase and peroxidase activity. Whereas catalase mimicking activity was demonstrated by the hydrogel under neutral and basic conditions, it shows peroxidase mimicking activity in an acidic medium. The multifunctionality of the synthesized metallogel was further demonstrated by phenoxazinone synthase-like activities. Owing to its catalase-mimicking activity, the metallogel could effectively reduce the oxidative stress produced in cells due to excess hydrogen peroxide by degrading H 2 O 2 to O 2 and H 2 O under physiological conditions. The biocompatible metallogel could prevent cell apoptosis by scavenging reactive oxygen species. A green and simple synthetic strategy utilizing commonly available biomolecules makes this metallogel highly attractive for catalytic and biomedical applications.
Keyphrases