Login / Signup

Delivery of Cisplatin Anti-Cancer Drug from Carbon, Boron Nitride, and Silicon Carbide Nanotubes Forced by Ag-Nanowire: A Comprehensive Molecular Dynamics Study.

Esmat MehrjoueiHamed AkbarzadehAmir Nasser ShamkhaliMohsen AbbaspourSirous SalemiPooya Abdi
Published in: Molecular pharmaceutics (2017)
In this work, liberation of cisplatin molecules from interior of a nanotube due to entrance of an Ag-nanowire inside it was simulated by classical molecular dynamics method. The aim of this simulation was investigation on the effects of diameter, chirality, and composition of the nanotube, as well as the influence of temperature on this process. For this purpose, single walled carbon, boron nitride, and silicon carbide nanotube were considered. In order for a more concise comparison of the results, a new parameter namely efficiency of drug release, was introduced. The results demonstrated that the efficiency of drug release is sensitive to its adsorption on outer surface of the nanotube. Moreover, this efficiency is also sensitive to the nanotube composition and its diameter. For the effect of nanotube composition, the results indicated that silicon carbide nanotube has the least efficiency for drug release, due to its strong drug-nanotube. Also, the most important acting forces on drug delivery are van der Waals interactions. Finally, the kinetic of drug release is fast and is not related to the structural parameters of the nanotube and temperature, significantly.
Keyphrases
  • drug release
  • drug delivery
  • molecular dynamics
  • cancer therapy
  • density functional theory
  • quantum dots
  • room temperature
  • drug induced
  • reduced graphene oxide
  • optical coherence tomography
  • ionic liquid
  • aqueous solution