A Bayesian maximum entropy model for predicting tsetse ecological distributions.
Lani C FoxBrad G PeterApril N FrakeJoseph P MessinaPublished in: International journal of health geographics (2023)
This work offers a solution to the persistent temporal data gap in accurate and spatially precise rainfall predictions and the delayed processing of remotely sensed data collectively in the - 45 days past to + 180 days future temporal window. As is shown here, the BME model is a reliable alternative for forecasting future tsetse distributions to allow preplanning for tsetse control. Furthermore, this model provides guidance on disease control that would otherwise not be available. These 'big data' BME methods are particularly useful for large domain studies. Considering that past BME studies required reduction of the spatiotemporal grid to facilitate analysis. Both the GEE-TED and the BME libraries have been made open source to enable reproducibility and offer continual updates into the future as new remotely sensed data become available.