Login / Signup

Improved Insulation Properties of Polypropylenes in HVDC Cables Using Aqueous Suspension Grafting.

Yiyi ZhangKeshuo ShiChunyan ZangWenchang WeiChuanhui XuJunwei Zha
Published in: Materials (Basel, Switzerland) (2022)
Owing to its lack of crosslinking, polypropylene (PP) is considered an environmentally friendly alternative to crosslinked polyethylene as high-voltage direct current (HVDC) cable insulation. However, pure PP can accumulate space charges under a HVDC, and thus must be modified for use as an insulating material for HVDC cables. In this study, 4-methylstyrene is grafted onto PP using an aqueous suspension grafting method to improve its properties. The effects of the swelling time, reaction time, and 4-methylphenylene concentration on the reaction were investigated. The optimum process conditions were determined, including an optimum grafting ratio of 0.97%. The volume resistivity, ability to suppress space-charge accumulation, and DC breakdown strength of modified PP were also studied. Modified PP with a grafting ratio of 0.88% showed optimal space-charge suppression and the highest volume resistivity and breakdown strength. The work will facilitate the design and development of more efficient insulation materials for HVDC cables.
Keyphrases
  • breast reconstruction
  • ionic liquid
  • immune response
  • high resolution
  • solar cells
  • electron transfer