Login / Signup

Synchrony in Networks of Type 2 Interneurons is More Robust to Noise with Hyperpolarizing Inhibition Compared to Shunting Inhibition in Both the Stochastic Population Oscillator and the Coupled Oscillator Regimes.

Roman BaravalleCarmen C Canavier
Published in: bioRxiv : the preprint server for biology (2023)
Brain rhythms in the gamma frequency band (30-80 Hz) depend on the activity of inhibitory interneurons and evidence for a causal role for gamma oscillations in cognitive functions is accumulating. Here we extend previous studies on synchronization mechanisms to interneurons that have an abrupt threshold frequency below which they cannot sustain firing. In addition to current based synapses, we examined inhibitory networks with conductance based synapses. We found that if the reversal potential for inhibition was below the average membrane potential (hyperpolarizing), synchrony was more robust to noise than if the reversal potential was very close to the average potential (shunting). These results have implications for therapies to ameliorate cognitive deficits.
Keyphrases
  • human health
  • risk assessment
  • multiple sclerosis
  • climate change
  • resting state