Login / Signup

Evolutionary toxicology in an omics world.

Elias M OziolorJohn W BickhamCole W Matson
Published in: Evolutionary applications (2017)
Evolutionary toxicology is a young field that has grown rapidly in the past two decades. The potential of this field comes from the ability to link chemical contamination to multigenerational and population-wide effects in various species. The advancements and rapidly decreasing costs of -omic tools are improving the power and resolution of evolutionary toxicology studies. In this manuscript, we aim to address the trajectories and perspectives for conducting evolutionary toxicology studies with -omic approaches. We discuss the complementarity of using multiple -omic tools (genomics, eDNA, transcriptomics, proteomics, and metabolomics) for utility in understanding the toxicological relevance of adaptive responses in populations. In addition, we discuss phenotypic plasticity and its relevance to transcriptomic studies in toxicology. As evolutionary toxicology grows and expands its capacity to link toxicology with population-wide end points, we emphasize the applications of such studies in answering questions about ecological and population health, as well as future applicability to regulation. Thus, we aim to emphasize the enormous potential for evolutionary toxicology in an -omics world and give perspectives on the directions of future investigations.
Keyphrases
  • single cell
  • genome wide
  • case control
  • human health
  • mass spectrometry
  • risk assessment
  • dna methylation
  • climate change
  • gene expression
  • current status