Login / Signup

Electrical monitoring of photoisomerization of block copolymers intercalated into graphene sheets.

Semin KimThanh-Hai LeYunseok ChoiHaney LeeEunseo HeoUnhan LeeSaerona KimSubin ChaeYoong Ahm KimHyeonseok Yoon
Published in: Nature communications (2020)
Insulating polymers have received little attention in electronic applications. Here, we synthesize a photoresponsive, amphiphilic block copolymer (PEO-b-PVBO) and further control the chain growth of the block segment (PVBO) to obtain different degrees of polymerization (DPs). The benzylidene oxazolone moiety in PEO-b-PVBO facilitated chain-conformational changes due to photoisomerization under visible/ultraviolet (UV) light illumination. Intercalation of the photoresponsive but electrically insulating PEO-b-PVBO into graphene sheets enabled electrical monitoring of the conformational change of the block copolymer at the molecular level. The current change at the microampere level was proportional to the DP of PVBO, demonstrating that the PEO-b-PVBO-intercalated graphene nanohybrid (PGNH) can be used in UV sensors. Additionally, discrete signals at the nanoampere level were separated from the first derivative of the time-dependent current using the fast Fourier transform (FFT). Analysis of the harmonic frequencies using the FFT revealed that the PGNH afforded sawtooth-type current flow mediated by Coulomb blockade oscillation.
Keyphrases
  • single molecule
  • molecular dynamics
  • molecular dynamics simulations
  • room temperature
  • carbon nanotubes
  • high frequency
  • walled carbon nanotubes
  • single cell
  • drug delivery
  • water soluble