Dynamic mechanisms for membrane skeleton transitions.
Mayte Bonilla-QuintanaAndrea GhisleniNils C GauthierPadmini RangamaniPublished in: bioRxiv : the preprint server for biology (2024)
Spectrin was first observed in red blood cells, as a result of which, many theoretical models focused on understanding its function in this cell type. However, recently, experiments have shown that spectrin is an important skeletal component for many different cell types and that it can form different configurations with actin. In this work, we proposed a model to study the shared mechanisms behind the function of the actin-spectrin meshwork in different types of cells. We found that membrane dynamics in addition to spectrin and myosin turnover are necessary to achieve conformational changes when stresses are applied and to guarantee shape stability when the stresses are removed. We observed that membrane bending is important to support skeletal structure. Furthermore, our model gives insight into how cell shape is maintained despite constant spectrin turnover and myosin contraction.