Homogenizing Energy Landscape for Efficient and Spectrally Stable Blue Perovskite Light-Emitting Diodes.
Heng QiYu TongXuewen ZhangHao WangLu ZhangYali ChenYibo WangJingzhi ShangKun WangHongqiang WangPublished in: Advanced materials (Deerfield Beach, Fla.) (2024)
Blue perovskite light-emitting diodes (PeLEDs) have attracted enormous attention; however, their unsatisfactory device efficiency and spectral stability still remain great challenges. Unfavorable low-dimensional phase distribution and defects with deeper energy levels usually cause energy disorder, substantially limiting the device's performance. Here, an additive-interface optimization strategy is reported to tackle these issues, thus realizing efficient and spectrally stable blue PeLEDs. A new type of additive-formamidinium tetrafluorosuccinate (FATFSA) is introduced into the quasi-2D mixed halide perovskite accompanied by interface engineering, which effectively impedes the formation of undesired low-dimensional phases with various bandgaps throughout the entire film, thereby boosting energy transfer process for accelerating radiative recombination; this strategy also diminishes the halide vacancies especially chloride-related defects with deep energy level, thus reducing nonradiative energy loss for efficient radiative recombination. Benefitting from homogenized energy landscape throughout the entire perovskite emitting layer, PeLEDs with spectrally-stable blue emission (478 nm) and champion external quantum efficiency (EQE) of 21.9% are realized, which represents a record value among this type of PeLEDs in the pure blue region.