Lamb dip CRDS of highly saturated transitions of water near 1.4 μm.
S KassiTim StoltmannMathieu CasadoM DaëronA CamparguePublished in: The Journal of chemical physics (2018)
Doppler-free saturated-absorption Lamb dips were measured at sub-Pa pressures on rovibrational lines of H216O near 7180 cm-1, using optical feedback frequency stabilized cavity ring-down spectroscopy. The saturation of the considered lines is so high that at the early stage of the ring down, the cavity loss rate remains unaffected by the absorption. By referencing the laser source to an optical frequency comb, transition frequencies are determined down to 100 Hz precision and kHz accuracy. The developed setup allows resolving highly K-type blended doublets separated by about 10 MHz (to be compared to a HWHM Doppler width on the order of 300 MHz). A comparison with the most recent spectroscopic databases is discussed. The determined K-type splittings are found to be very well predicted by the most recent variational calculations.