Natural Self-Confined Structure Effectively Suppressing Volume Expansion toward Advanced Lithium Storage.
Yun ZhangJun HuangZhu LiaoAnyi HuXinyu LiNagahiro SaitoZhengxi ZhangLi YangShin-Ichi HiranoPublished in: ACS applied materials & interfaces (2021)
Volume expansion hinders conversion-type transition-metal oxides (TMOs) as potential anode candidates for high-capacity lithium-ion batteries. While nanostructuring and nanosizing have been employed to improve the cycling stability of TMOs, we show here that both high initial Coulombic efficiency (ICE) and stable cycling reversibility are achieved in the layered compound Li0.9Nb0.9Mo1.1O6 (L0.9NMO) by inherent properties of the bulk crystal structure. In this model, MoO6 octahedra as active centers react with lithium ions and endow capacity, while a grid composed of NbO6 octahedra effectively suppresses the volume expansion, enhances the conductivity, and supports the structural skeleton from collapse. As a result, bulk L0.9NMO not only delivers a high discharge capacity of 1128 mA h g-1 at 100 mA g-1 with a considerable ICE of 87% but also exhibits long cycling stability and good rate performance (339 mA h g-1 after 500 cycles at 1 A g-1 with an average Coulombic efficiency approaching 100%). The self-confined structure provides a competitive strategy for stable conversion-type lithium storage.