A Quantum Walk Model for Idea Propagation in Social Network and Group Decision Making.
Qizi ZhangJerome R BusemeyerPublished in: Entropy (Basel, Switzerland) (2021)
We propose a quantum walk model to investigate the propagation of ideas in a network and the formation of agreement in group decision making. In more detail, we consider two different graphs describing the connections of agents in the network: the line graph and the ring graph. Our main interest is to deduce the dynamics for such propagation, and to investigate the influence of compliance of the agents and graph structure on the decision time and the final decision. The methodology is based on the use of control-U gates in quantum computing. The original state of the network is used as controller and its mirrored state is used as target. The state of the quantum walk is the tensor product of the original state and the mirror state. In this way, the proposed quantum walk model is able to describe asymmetric influence between agents.