Discharge Patterns of Potentially Harmful Elements (PHEs) from Coking Plants and Its Relationship with Soil PHE Contents in the Beijing-Tianjin-Hebei Region, China.
Xiaoming WanWeibin ZengGaoquan GuLingqing WangMei LeiPublished in: Toxics (2022)
The Beijing-Tianjin-Hebei (BTH) region in China is a rapid development area with a dense population and high-pollution, high-energy-consumption industries. Despite the general idea that the coking industry contributes greatly to the total emission of potentially harmful elements (PHEs) in BTH, quantitative analysis on the PHE pollution caused by coking is rare. This study collected the pollutant discharge data of coking enterprises and assessed the risks of coking plants in BTH using the soil accumulation model and ecological risk index. The average contribution rate of coking emissions to the total emissions of PHEs in BTH was ~7.73%. Cross table analysis indicated that there was a close relationship between PHEs discharged by coking plants and PHEs in soil. The accumulation of PHEs in soil and their associated risks were calculated, indicating that nearly 70% of the coking plants posed a significant ecological risk. Mercury, arsenic, and cadmium were the main PHEs leading to ecological risks. Scenario analysis indicated that the percentage of coking plants with high ecological risk might rise from 8.50% to 20.00% as time progresses. Therefore, the control of PHEs discharged from coking plants in BTH should be strengthened. Furthermore, regionalized strategies should be applied to different areas due to the spatial heterogeneity of risk levels.