Login / Signup

A Study on Origin Traceability of White Tea (White Peony) Based on Near-Infrared Spectroscopy and Machine Learning Algorithms.

Lingzhi ZhangHaomin DaiJialin ZhangZhiqiang ZhengBo SongJiaya ChenGang LinLinhai ChenWeijiang SunYan Huang
Published in: Foods (Basel, Switzerland) (2023)
Identifying the geographical origins of white tea is of significance because the quality and price of white tea from different production areas vary largely from different growing environment and climatic conditions. In this study, we used near-infrared spectroscopy (NIRS) with white tea ( n = 579) to produce models to discriminate these origins under different conditions. Continuous wavelet transform (CWT), min-max normalization (Minmax), multiplicative scattering correction (MSC) and standard normal variables (SNV) were used to preprocess the original spectra (OS). The approaches of principal component analysis (PCA), linear discriminant analysis (LDA) and successive projection algorithm (SPA) were used for features extraction. Subsequently, identification models of white tea from different provinces of China (DPC), different districts of Fujian Province (DDFP) and authenticity of Fuding white tea (AFWT) were established by K-nearest neighbors (KNN), random forest (RF) and support vector machine (SVM) algorithms. Among the established models, DPC-CWT-LDA-KNN, DDFP-OS-LDA-KNN and AFWT-OS-LDA-KNN have the best performances, with recognition accuracies of 88.97%, 93.88% and 97.96%, respectively; the area under curve (AUC) values were 0.85, 0.93 and 0.98, respectively. The research revealed that NIRS with machine learning algorithms can be an effective tool for the geographical origin traceability of white tea.
Keyphrases
  • machine learning
  • deep learning
  • artificial intelligence
  • south africa
  • big data
  • climate change