Variant-specific Mendelian Risk Prediction Model.
Eunchan BaeJulie-Alexia DiasTheodore HuangJinbo ChenGiovanni ParmigianiTimothy R RebbeckDanielle BraunPublished in: bioRxiv : the preprint server for biology (2023)
Many pathogenic sequence variants (PSVs) have been associated with increased risk of cancers. Mendelian risk prediction models use Mendelian laws of inheritance to predict the probability of having a PSV based on family history, as well as specified PSV frequency and penetrance (agespecific probability of developing cancer given genotype). Most existing models assume penetrance is the same for any PSVs in a certain gene. However, for some genes (for example, BRCA1/2), cancer risk does vary by PSV. We propose an extension of Mendelian risk prediction models to relax the assumption that risk is the same for any PSVs in a certain gene by incorporating variant-specific penetrances and illustrating these extensions on two existing Mendelian risk prediction models, BRCAPRO and PanelPRO. Our proposed BRCAPRO-variant and PanelPRO-variant models incorporate variant-specific BRCA1/2 PSVs through the region classifications. Due to the sparsity of the variant information we classify BRCA1/2 PSVs into three regions; the breast cancer clustering region (BCCR), the ovarian cancer clustering region (OCCR), and an other region. Simulations were conducted to evaluate the performance of the proposed BRCAPRO-variant model compared to the existing BRCAPRO model which assumes the penetrance is the same for any PSVs in BRCA1 (and respectively BRCA2). Simulation results showed that the BRCAPRO-variant model was well calibrated to predict region-specific BRCA1/2 carrier status with high discrimination and accuracy on the region-specific level. In addition, we showed that the BRCAPRO-variant model achieved performance gains over the existing risk prediction models in terms of calibration without loss in discrimination and accuracy. We also evaluated the performance of the two proposed models, BRCAPRO-variant and PanelPRO-variant, on a cohort of 1,961 families from the Cancer Genetics Network (CGN). We showed that our proposed models provide region-specific PSV carrier probabilities with high accuracy, while the calibration, discrimination and accuracy of gene-specific PSV carrier probabilities were comparable to the existing gene-specific models. As more variant-specific PSV penetrances become available, we have shown that Mendelian risk prediction models can be extended to integrate the additional information, providing precise variant or region-specific PSV carrier probabilities and improving future cancer risk predictions.