Login / Signup

Thermodynamic Analysis of Chemically Reacting Mixtures and Their Kinetics: Example of a Mixture of Three Isomers.

Miloslav Pekař
Published in: Chemphyschem : a European journal of chemical physics and physical chemistry (2016)
Thermodynamics provides consequences of and restrictions on chemically reacting mixtures, particularly their kinetics, which have not been fully explored. Herein, a comprehensive thermodynamic analysis is illustrated for a reacting mixture of three isomers. The rate equation is first derived on the basis of the results of nonequilibrium continuum thermodynamics of linear fluids, and is then subjected to the requirement of consistency with entropic inequality (the second law). This consistency test involves the correct representation of the reaction rate as a function of affinities. It is shown that entropic inequality restricts the signs or values of coefficients in the constitutive equations for reaction rates/rate constants. The use of reverse rate constants and the identification of thermodynamic and kinetic equilibrium constants are not necessary in this approach. Although the presented thermodynamic analysis works only for independent reactions, the rates of dependent reactions are not excluded from having effects on kinetics. It is shown that the rates of dependent reactions are combined from the rates of independent reactions differently than dependent reactions are combined from independent reactions. The results are compared to the classical mass-action rate equations, and new restrictions on the values of the classical rate constants are derived.
Keyphrases
  • aqueous solution
  • ionic liquid
  • molecular dynamics