Laser Ablation Remote-Electrospray Ionisation Mass Spectrometry (LARESI MSI) Imaging-New Method for Detection and Spatial Localization of Metabolites and Mycotoxins Produced by Moulds.
Justyna SzulcTomasz RumanPublished in: Toxins (2020)
To date, no method has been developed to assess the distribution of mycotoxins on the surface of grains, or other plant material, and the depth of their penetration into the interior. The Infrared (IR) Laser Ablation-Remote-Electrospray Ionization (LARESI) platform coupled to a tandem mass spectrometer (MS/MS), measuring in selected reaction monitoring (SRM) mode, was employed for the targeted imaging of selected metabolites of Aspergillus fumigatus, including mycotoxins in biological objects for the first time. This methodology allowed for the localisation of grain metabolites and fungal metabolites of grain infected by this mould. The distribution of metabolites in spelt grain was differentiated: fumigaclavine C, fumitremorgin C, and fumiquinazoline D were located mainly in the embryo, brevianamide F in the seed coat, and fumagillin in the endosperm. The LARESI mass spectrometry imaging method can be used in the future for the metabolomic analysis of mould metabolites in various plants and agricultural products.
Keyphrases
- ms ms
- high resolution
- mass spectrometry
- liquid chromatography
- liquid chromatography tandem mass spectrometry
- high performance liquid chromatography
- risk assessment
- capillary electrophoresis
- climate change
- high throughput
- high speed
- heavy metals
- gas chromatography
- optical coherence tomography
- radiofrequency ablation
- quantum dots