Plasticity of antimicrobial and phagocytic programs in human macrophages.
Dennis MontoyaManali MehtaBenjamin G FergusonRosane M B TelesStephan R KrutzikDaniel CruzMatteo PellegriniRobert L ModlinPublished in: Immunology (2018)
Macrophage (MΦ) polarization is triggered during the innate immune response to defend against microbial pathogens, but can also contribute to disease pathogenesis. In a previous study, we found that interleukin-15 (IL-15) -derived classically activated macrophages (M1 MΦ) have enhanced antimicrobial activity, whereas IL-10-derived alternatively activated macrophages (M2 MΦ) were highly phagocytic but lacked antimicrobial activity. Given that the ability to modulate MΦ polarization from M2 MΦ to M1 MΦ may promote a more effective immune response to infection, we investigated the plasticity of these MΦ programs. Addition of IL-10 to M1 MΦ induced M2-like MΦ, but IL-15 had little effect on M2 MΦ. We determined the set of immune receptors that are present on M2 MΦ, elucidating two candidates for inducing plasticity of M2 MΦ, Toll-like receptor 1 (TLR1) and interferonγ (IFN-γ) receptor 1. Stimulation of M2 MΦ with TLR2/1 ligand (TLR2/1L) or IFN-γ alone was not sufficient to alter M2 MΦ phenotype or function. However, co-addition of TLR2/1L and IFN-γ re-educated M2 MΦ towards the M1 MΦ phenotype, with a decrease in the phagocytosis of lipids and mycobacteria, as well as recovery of the vitamin-D-dependent antimicrobial pathway compared with M2 MΦ maintained in polarizing conditions. Similarly, treatment of M2 MΦ with both TLR2/1L and anti-IL-10 neutralizing antibodies led to polarization to the M1-like MΦ phenotype and function. Together, our data demonstrate an approach to induce MΦ plasticity that provides the potential for re-educating MΦ function in human mycobacterial disease to promote host defense and limit pathogenesis.
Keyphrases
- toll like receptor
- immune response
- inflammatory response
- nuclear factor
- dendritic cells
- endothelial cells
- innate immune
- staphylococcus aureus
- public health
- mycobacterium tuberculosis
- high resolution
- electronic health record
- risk assessment
- antimicrobial resistance
- multidrug resistant
- climate change
- combination therapy
- data analysis
- replacement therapy
- smoking cessation