Login / Signup

Curing profile and marginal gap formation using a liner containing long-wavelength-absorbing photoinitiator: an in vitro study.

May Anny Alves FragaDayane Carvalho Ramos Salles de OliveiraMateus Garcia RochaMário Alexandre Coelho SinhoretiLourenço Correr-SobrinhoAmérico Bortolazzo Correr
Published in: Lasers in medical science (2023)
The aim was to evaluate the marginal-gap formation and curing profile of a new restorative technique using a liner with long-wavelength-absorbing photoinitiator (LWAP). Box-shaped preparations (6 mm × 4 mm × 4 mm) were made in third molars. All samples were treated with Clearfill SE Bond and divided into 4 groups (n = 5), according to restorative technique used: (1) incremental technique (INC-Technique); (2) camphorquinone-based liner (CQ-Liner) + bulk-fill resin composite; (3) LWAP-based liner (LWAP-Liner) + bulk-fill resin composite; and (4) bulk-fill technique without liner (BF-Technique). The marginal gaps (%) for all the samples were measured using micro-computed tomography. The restorations were cross-sectioned, and the degree of conversion (DC) and Knoop microhardness were evaluated at different depths (0.3, 1, 2, 3, and 4 mm). INC-Technique, CQ-Liner, and LWAP-Liner groups showed significantly fewer marginal gaps than those from the BF-Technique group. The BF-Technique specimens had the lowest DC and microhardness in depth. All the other techniques presented similar degree of conversion and microhardness at all the depths. The use of liners, regardless of the photoinitiator system, decreased the marginal-gap formation and improved the curing profile of bulk-filling restoration technique.
Keyphrases
  • computed tomography
  • dendritic cells
  • magnetic resonance imaging
  • transcription factor
  • magnetic resonance