Energy Expenditure of a Single Sit-to-Stand Movement with Slow Versus Normal Speed Using the Different Frequency Accumulation Method.
Takashi NakagataYosuke YamadaYoichi HatamotoHisashi NaitoPublished in: Medicina (Kaunas, Lithuania) (2019)
Background and objectives: The purpose of this study was to compare the energy expenditures (EE) of a single sit-to-stand (STS) movements with slow and normal speeds using a multi-stage exercise test. Materials and Methods: Twelve young males, aged 21⁻27 years (age, 23.0 ± 1.7 years; height, 171.2 ± 6.1 cm; weight, 64.3 ± 5.6 kg), performed repeated 3-s stand-up and 3-s sit-down (slow) or 1-s stand-up and 1-s sit-down (normal) movement on two different days with random order. All the participants completed multi-stage tests at different STS frequencies per minute. The slope and intercept of the linear regression relationship between the EE (kcal/min) and the STS frequency were obtained, and the slope of the regression was quantified as the EE of an STS. Results: The metabolic equivalents (METs) of the STS-slow was 4.5 METs for the frequency of 10 times/min (in total 1 min), and the net EE was 5.00 ± 1.2 kcal/min. The net EE of the STS-slow was 0.37 ± 0.12 kcal, which was significantly greater than that during the STS-normal (0.26 ± 0.06 kcal). The difference between the EEs of the STS-slow and STS-normal was significantly greater in taller and heavier subjects. Conclusions: We concluded that the intensity of STS-slow movement is moderate, and the EE during an STS-slow (0.37 ± 0.12 kcal) is higher than that during an STS-normal (0.26 ± 0.06 kcal). Our study results will help exercise and/or health professionals prescribe physical activity programs using STS movement for healthy young population groups.