Login / Signup

Wearable Sensors for Breath Monitoring Based on Water-based Hexagonal Boron Nitride Inks Made with Supramolecular Functionalization.

Liming ChenKui HuMingyang LuZiqi ChenXiwen ChenTianqi ZhouXuqing LiuWuliang YinCinzia CasiraghiXiuju Song
Published in: Advanced materials (Deerfield Beach, Fla.) (2024)
Wearable humidity sensors are attracting strong attention as they allow to continuously monitor in real time important physiological information by enabling activity tracking as well as air quality assessment. Amongst 2-Dimensional (2D) materials, Graphene Oxide (GO) is very attractive for humidity sensing due to its tuneable surface chemistry, high surface area, processability in water and easy integration onto flexible substrates. However, large hysteresis, low sensitivity and strong cross-sensitivity issues limit the use of GO in practical applications, where continuous monitoring is preferred. Herein, we demonstrate a wearable and wireless impedance-based humidity sensor made with pyrene-functionalized hexagonal boron nitride (h-BN) nanosheets, which shows enhanced sensitivity towards relative humidity, RH (>10 10 Ohms/%RH in the range from 5% to 100%RH), fast response (0.1 ms), no appreciable hysteresis and cross-sensitivity in the range of 25-60°C. We finally demonstrate that the h-BN based sensor is able to monitor the whole breathing cycle process of exhaling and inhaling, hence enabling to record in real time the subtlest changes of respiratory signals associated with different daily activities as well as various symptoms of flu, without requiring any direct contact with the individual. This article is protected by copyright. All rights reserved.
Keyphrases