Login / Signup

Enhanced Photocurrent of Transparent CuFeO2 Photocathodes by Self-Light-Harvesting Architecture.

Yunjung OhWooseok YangJimin KimSunho JeongJooho Moon
Published in: ACS applied materials & interfaces (2017)
Efficient sunlight-driven water-splitting devices can be achieved by using an optically and energetically well-matched pair of photoelectrodes in a tandem configuration. The key for maximizing the photoelectrochemical efficiency is the use of a highly transparent front photoelectrode with a band gap below 2.0 eV. Herein, we propose two-dimensional (2D) photonic crystal (PC) structures consisting of a CuFeO2-decorated microsphere monolayer, which serve as self-light-harvesting architectures allowing for amplified light absorption and high transparency. The photocurrent densities are evaluated for three CuFeO2 2D PC-based photoelectrodes with microspheres of different sizes. The optical analysis confirmed the presence of a photonic stop band that generates slow light and at the same time amplifies the absorption of light. The 410 nm sized CuFeO2-decorated microsphere 2D PC photocathode shows an exceptionally high visible light transmittance of 76.4% and a relatively high photocurrent of 0.2 mA cm-2 at 0.6 V vs a reversible hydrogen electrode. The effect of the microsphere size on the carrier collection efficiency was analyzed by in situ conductive atomic force microscopy observation under illumination. Our novel synthetic method to produce self-light-harvesting nanostructures provides a promising approach for the effective use of solar energy by highly transparent photocathodes.
Keyphrases
  • visible light
  • high speed
  • atomic force microscopy
  • high resolution
  • mass spectrometry
  • photodynamic therapy
  • energy transfer