Login / Signup

Automated characterization of patient-ventilator interaction using surface electromyography.

Julia SauerJan GraßhoffNiklas M CarbonWilli M KochSteffen Weber-CarstensPhilipp Rostalski
Published in: Annals of intensive care (2024)
Our study demonstrates the feasibility of automating the quantification of patient-ventilator asynchrony in critically ill patients using noninvasive sEMG. This may facilitate more frequent diagnosis of asynchrony and support improving patient-ventilator interaction.
Keyphrases
  • case report
  • acute respiratory distress syndrome
  • mechanical ventilation
  • machine learning
  • deep learning
  • high throughput
  • single cell